186 research outputs found

    Fiber-optic breath sensors: A comparison study

    Get PDF
    The paper presents a comparative study of three fiber optic sensors based on the fiber Bragg grating (FBG). The basic monitored parameter is the respiratory rate of the human body. Fiber-optic sensors are immune to electromagnetic interference (EMI). This fact singles them out as ideal for use in magnetic resonance environments (typically in MRI -magnetic resonance imaging) as a prediction of hyperventilation states in patients. These patient conditions arise as a result of the closed tunnel environment in MR scanners. The results (10 volunteers with written consent) were compared with the results using the conventional respiratory belt (RB) in a laboratory environment and processed using the objective Bland-Altman (B-A) method.Web of Science40635

    Comparison of different electrocardiography with vectorcardiography transformations

    Get PDF
    This paper deals with transformations from electrocardiographic (ECG) to vectorcardiographic (VCG) leads. VCG provides better sensitivity, for example for the detection of myocardial infarction, ischemia, and hypertrophy. However, in clinical practice, measurement of VCG is not usually used because it requires additional electrodes placed on the patient's body. Instead, mathematical transformations are used for deriving VCG from 12-leads ECG. In this work, Kors quasi-orthogonal transformation, inverse Dower transformation, Kors regression transformation, and linear regression-based transformations for deriving P wave (PLSV) and QRS complex (QLSV) are implemented and compared. These transformation methods were not yet compared before, so we have selected them for this paper. Transformation methods were compared for the data from the Physikalisch-Technische Bundesanstalt (PTB) database and their accuracy was evaluated using a mean squared error (MSE) and a correlation coefficient (R) between the derived and directly measured Frank's leads. Based on the statistical analysis, Kors regression transformation was significantly more accurate for the derivation of the X and Y leads than the others. For the Z lead, there were no statistically significant differences in the medians between Kors regression transformation and the PLSV and QLSV methods. This paper thoroughly compared multiple VCG transformation methods to conventional VCG Frank's orthogonal lead system, used in clinical practice.Web of Science1914art. no. 307

    Design of a new method for detection of occupancy in the smart home using an FBG sensor

    Get PDF
    This article introduces a new way of using a fibre Bragg grating (FBG) sensor for detecting the presence and number of occupants in the monitored space in a smart home (SH). CO2 sensors are used to determine the CO2 concentration of the monitored rooms in an SH. CO2 sensors can also be used for occupancy recognition of the monitored spaces in SH. To determine the presence of occupants in the monitored rooms of the SH, the newly devised method of CO2 prediction, by means of an artificial neural network (ANN) with a scaled conjugate gradient (SCG) algorithm using measurements of typical operational technical quantities (indoor temperature, relative humidity indoor and CO2 concentration in the SH) is used. The goal of the experiments is to verify the possibility of using the FBG sensor in order to unambiguously detect the number of occupants in the selected room (R104) and, at the same time, to harness the newly proposed method of CO2 prediction with ANN SCG for recognition of the SH occupancy status and the SH spatial location (rooms R104, R203, and R204) of an occupant. The designed experiments will verify the possibility of using a minimum number of sensors for measuring the non-electric quantities of indoor temperature and indoor relative humidity and the possibility of monitoring the presence of occupants in the SH using CO2 prediction by means of the ANN SCG method with ANN learning for the data obtained from only one room (R203). The prediction accuracy exceeded 90% in certain experiments. The uniqueness and innovativeness of the described solution lie in the integrated multidisciplinary application of technological procedures (the BACnet technology control SH, FBG sensors) and mathematical methods (ANN prediction with SCG algorithm, the adaptive filtration with an LMS algorithm) employed for the recognition of number persons and occupancy recognition of selected monitored rooms of SH.Web of Science202art. no. 39

    Hybrid methods based on empirical mode decomposition for non-invasive fetal heart rate monitoring

    Get PDF
    This study focuses on fetal electrocardiogram (fECG) processing using hybrid methods that combine two or more individual methods. Combinations of independent component analysis (ICA), wavelet transform (WT), recursive least squares (RLS), and empirical mode decomposition (EMD) were used to create the individual hybrid methods. Following four hybrid methods were compared and evaluated in this study: ICA-EMD, ICA-EMD-WT, EMD-WT, and ICA-RLS-EMD. The methods were tested on two databases, the ADFECGDB database and the PhysioNet Challenge 2013 database. Extraction evaluation is based on fetal heart rate (fHR) determination. Statistical evaluation is based on determination of correct detection (ACC), sensitivity (Se), positive predictive value (PPV), and harmonic mean between Se and PPV (F1). In this study, the best results were achieved by means of the ICA-RLS-EMD hybrid method, which achieved accuracy(ACC) > 80% at 9 out of 12 recordings when tested on the ADFECGDB database, reaching an average value of ACC > 84%, Se > 87%, PPV > 92%, and F1 > 90%. When tested on the Physionet Challenge 2013 database, ACC > 80% was achieved at 12 out of 25 recordings with an average value of ACC > 64%, Se > 69%, PPV > 79%, and F1 > 72%.Web of Science8512185120

    Novel hybrid extraction systems for fetal heart rate variability monitoring based on non-invasive fetal electrocardiogram

    Get PDF
    This study focuses on the design, implementation and subsequent verification of a new type of hybrid extraction system for noninvasive fetal electrocardiogram (NI-fECG) processing. The system designed combines the advantages of individual adaptive and non-adaptive algorithms. The pilot study reviews two innovative hybrid systems called ICA-ANFIS-WT and ICA-RLS-WT. This is a combination of independent component analysis (ICA), adaptive neuro-fuzzy inference system (ANFIS) algorithm or recursive least squares (RLS) algorithm and wavelet transform (WT) algorithm. The study was conducted on clinical practice data (extended ADFECGDB database and Physionet Challenge 2013 database) from the perspective of non-invasive fetal heart rate variability monitoring based on the determination of the overall probability of correct detection (ACC), sensitivity (SE), positive predictive value (PPV) and harmonic mean between SE and PPV (F1). System functionality was verified against a relevant reference obtained by an invasive way using a scalp electrode (ADFECGDB database), or relevant reference obtained by annotations (Physionet Challenge 2013 database). The study showed that ICA-RLS-WT hybrid system achieve better results than ICA-ANFIS-WT. During experiment on ADFECGDB database, the ICA-RLS-WT hybrid system reached ACC > 80 % on 9 recordings out of 12 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 6 recordings out of 12. During experiment on Physionet Challenge 2013 database the ICA-RLS-WT hybrid system reached ACC > 80 % on 13 recordings out of 25 and the ICA-ANFIS-WT hybrid system reached ACC > 80 % only on 7 recordings out of 25. Both hybrid systems achieve provably better results than the individual algorithms tested in previous studies.Web of Science713178413175

    Methods of power line interference elimination in EMG signals

    Get PDF
    Electromyogram (EMG) recordings are often corrupted by the wide range of artifacts, which one of them is power line interference (PLI). The study focuses on some of the well-known signal processing approaches used to eliminate or attenuate PLI from EMG signal. The results are compared using signal-to-noise ratio (SNR), correlation coefficients and Bland-Altman analysis for each tested method: notch filter, adaptive noise canceller (ANC) and wavelet transform (WT). Thus, the power of the remaining noise and shape of the output signal are analysed. The results show that the ANC method gives the best output SNR and lowest shape distortion compared to the other methods.Web of Science40706

    Case studies on the use of LiveLink for MATLAB for evaluation and optimization of the heat sources in experimental borehole

    Get PDF
    In the Czech part of the Upper Silesian Coal Basin (Moravian-Silesian region, Czech Republic), there are many deposits of endogenous combustion (e.g., localized burning soil bodies, landfills containing industrial waste, or slag rocks caused by mining processes). The Hedwig mining dump represents such an example of these sites where, besides the temperature and the concentrations of toxic gases, electric and non-electric quantities are also monitored within the frame of experimentally proposed and patented technology for heat collection (the so-called "Pershing" system). Based on these quantities, this paper deals with the determination and evaluation of negative heat sources and the optimization of the positive heat source dependent on measured temperatures within evaluation points or on a thermal profile. The optimization problem is defined based on a balance of the heat sources in the steady state while searching for a local minimum of the objective function for the heat source. From an implementation point of view, it is the interconnection of the numerical model of the heat collector in COMSOL with a user optimization algorithm in MATLAB using the LiveLink for MATLAB. The results are elaborated in five case studies based on the susceptibility testing of the numerical model by input data from the evaluation points. The tests were focused on the model behavior in terms of preprocessing for measurement data from each chamber of the heat collector and for the estimated value of temperature differences at 90% and 110% of the nominal value. It turned out that the numerical model is more sensitive to the estimates in comparison with the measured data of the chambers, and this finding does not depend on the type optimization algorithm. The validation of the model by the use of the mean-square error led to the finding of optimal value, also valid with respect to the other evaluation.Web of Science205art. no. 129

    Analysis of vibration and acoustic signals for noncontact measurement of engine rotation speed

    Get PDF
    The non-contact measurement of engine speed can be realized by analyzing engine vibration frequency. However, the vibration signal is distorted by harmonics and noise in the measurement. This paper presents a novel method for the measurement of engine rotation speed by using the cross-correlation of vibration and acoustic signals. This method can enhance the same frequency components in engine vibration and acoustic signal. After cross-correlation processing, the energy centrobaric correction method is applied to estimate the accurate frequency of the engine's vibration. This method can be implemented with a low-cost embedded system estimating the cross-correlation. Test results showed that this method outperformed the traditional vibration-based measurement method.Web of Science203art. no. 68

    Effect of selected luminescent layers on CCT, CRI, and response times

    Get PDF
    Phosphors have been used as wavelength converters in illumination for many years. When it is excited with blue light, the frequently used yttrium aluminium garnet doped with cerium (YAG:Ce) phosphor converts a part of blue light to a wideband yellow light, resulting in the generated light having a white color. By combining an appropriate concentration of the YAG:Ce phosphor and blue excitant light, white light of a desired correlated color temperature (CCT) can be obtained. However, this type of illumination has a lower color rendering index value (CRI). In an attempt to improve the CRI value, we mixed the YAG:Ce phosphor with europium-doped calcium sulfide phosphor (CaS:Eu), which resulted in a considerably increased CRI value. This article examines an experiment with luminescent layers consisting of a mixture of selected phosphors and polydimethylsiloxane (PDMS). Different thicknesses in these layers were achieved by changing the speed of rotation during their accumulation onto laboratory glass using the method of spin coating. The spectral characteristics of these luminescent layers as they were excited with blue light emitting diode (LED) and laser diode (LD) were then determined. A suitable combination of the YAG:Ce phosphor with a phosphor containing europium, as it was excited with a blue LED, yielded a source of white light with a CRI value of greater than 85. The response time in the tested luminescent layers to a rectangular excitant impulse (generated by a signal generator and transmitted by LD) was also measured in order to examine their potential use in visible light communications (VLC).Web of Science1213art. no. 209

    The use of Complex Adaptive Methods of Signal Processing for Refining the Diagnostic Quality of the Abdominal Fetal Electrocardiogram

    Get PDF
    Import 05/08/2014Tato doktorská disertační práce se zabývá využitím komplexních adaptivních metod zpracování signálů pro zpřesnění diagnostické kvality abdominálního fetálního elektrokardiogramu. Fetální elektrokardiogram fEKG obsahuje cenné informace, které mohou pomoci lékařům při monitorování a diagnostice ohrožených plodů v průběhu těhotenství a během porodu. Doktorská disertační práce se primárně zaměřuje na externí abdominální neinvazivní monitoring plodu, který sebou na rozdíl od klasického interního invazivního monitoringu přináší řadu problémů s kvalitou záznamu. Fetální elektrokardiogram, který je podrobován lékařské diagnostice, je v reálných podmínkách degradován množstvím nežádoucích složek. Především se jedná o superponování silnějšího elektrokardiogramu matky mEKG, technických artefaktů (rušení elektrovodnou sítí) a biologických artefaktů (pohybové artefakty, děložní kontrakce). Tato doktorská disertační práce se zaměřuje na adaptivní metody zpracování fEKG signálů, které mají ambice odstranit pochybnosti v hodnocení fEKG při použití šetrnějšího externího monitoringu.This dissertation deals with the application of complex adaptive methods of signal processing for refining the diagnostic quality of abdominal fetal electrocardiogram. The FECG (fetal electrocardiogram) contains this sort of information that is valuable for doctors in monitoring and diagnosing of endangered fetuses in the course of pregnancy or in the childbirth. The doctoral thesis concentrates primarily on external abdominal non-invasive fetus monitoring technique, which, contrary to the classical internal invasive monitoring, entails a number of problems with record quality. In real conditions, the diagnosed fetal electrocardiogram is downgraded by amount of unwanted components. In particular it is caused by superposition of these factors: stronger maternal electrocardiogram MECG, technical artefacts (transmission grid interference) and biological artefacts (uterine contraction, motion artefacts). This dissertation is aimed at such adaptive methods of FECG signal processing, whose ambition is to clear any doubts in the evaluation of more discreet method of external FECG monitoring.Prezenční450 - Katedra kybernetiky a biomedicínského inženýrstvívyhově
    corecore